Effect of Rotation on Scaffold Motion and Cell Growth in Rotating Bioreactors
نویسندگان
چکیده
Efficient use of different bioreactor designs to improve cell growth in three-dimensional scaffolds requires an understanding of their mechanism of action. To address this for rotating wall vessel bioreactors, fluid and scaffold motion were investigated experimentally at different rotation speeds and vessel fill volumes. Low cost bioreactors with single and dual axis rotation were developed to investigate the effect of these systems on human osteoblast proliferation in free floating and constrained collagen-glycosaminoglycan porous scaffolds. A range of scaffold motions (free fall, periodic oscillation, and orbital motion) were observed at the rotation speeds and vessel fluid/air ratios used, with 85% fluid fill and an outer vessel wall velocity of ∼14 mm s-1 producing a scaffold in a free fall state. The cell proliferation results showed that after 14 and 21 days of culture, this combination of fluid fill and speed of rotation produced significantly greater cell numbers in the scaffolds than when lower or higher rotation speeds (p < 0.002) or when the chamber was 60% or 100% full (p < 0.01). The fluid flow and scaffold motion experiments show that biaxial rotation would not improve the mass transfer of medium into the scaffold as the second axis of rotation can only transition the scaffold toward oscillatory or orbital motion and, hence, reduce mass transport to the scaffold. The cell culture results confirmed that there was no benefit to the second axis of rotation with no significant difference in cell proliferation either when the scaffolds were free floating or constrained (p > 0.05).
منابع مشابه
Alternating air-medium exposure in rotating bioreactors optimizes cell metabolism in 3D novel tubular scaffold polyurethane foams.
BACKGROUND In vitro dynamic culture conditions play a pivotal role in developing engineered tissue grafts, where the supply of oxygen and nutrients, and waste removal must be permitted within construct thickness. For tubular scaffolds, mass transfer is enhanced by introducing a convective flow through rotating bioreactors with positive effects on cell proliferation, scaffold colonization and ex...
متن کاملBone Tissue Engineering: a Mini-Review
Despite advances in bone tissue engineering, auto grafts from intra-oral or extra-oral donor sites are still the gold standard for treatment of large craniomaxillofacial defects. Biomaterial development, application of growth factor, and stem cells, open new gateway to bone regeneration studies, but real translation from bench to bedside have not yet happened. In this review article, a number o...
متن کاملThermal Convection in a (Kuvshiniski-type) Viscoelastic Rotating Fluid in the Presence of Magnetic Field through Porous Medium (TECHNICAL NOTE)
The effect of magnetic field on an incompressible (Kuvshiniski-Type) viscoelastic rotating fluid heated from below in porous medium is considered. For the case of stationary convection, magnetic field and medium permeability have both stabilizing and destabilizing effect on the thermal convection under some conditions whereas rotation has a stabilizing effect on the thermal convection. In the...
متن کاملInfluence of Rotation on Vibration Behavior of a Functionally Graded Moderately Thick Cylindrical Nanoshell Considering Initial Hoop Tension
In this research, the effect of rotation on the free vibration is investigated for the size-dependent cylindrical functionally graded (FG) nanoshell by means of the modified couple stress theory (MCST). MCST is applied to make the design and the analysis of nano actuators and nano sensors more reliable. Here the equations of motion and boundary conditions are derived using minimum potential ene...
متن کاملNonlinear stability of rotating two superposed magnetized fluids with the technique of the homotopy perturbation
In the present work, the Rayleigh-Taylor instability of two rotating superposed magnetized fluids within the presence of a vertical or a horizontal magnetic flux has been investigated. The nonlinear theory is applied, by solving the equation of motion and uses the acceptable nonlinear boundary conditions. However, the nonlinear characteristic equation within the elevation parameter is obtained....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 23 شماره
صفحات -
تاریخ انتشار 2017